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ABSTRACT 

We prove that MA(a-centered) + the Dual Borel Conjecture is consistent; 
and that MA(a-centered) + the non-additivity of the ideal of the strong 
measure zero sets also is consistent. 

~0. Introduction 

In this work we will study models for set theory where MA(a-centered) 

holds. This extra assumption for the set theory universe has been studied by 

many people, and it is known, for example, that it is also consistent with the 

non-existence of random reals over L. The results in Sections §1, 2 are a 

strongest form of the above-mentioned fact about random reals, and in order 

to state them, we need some definitions. 

0.1. DEFINITION (Borel). We say that X c R has strong measure zero if for 

every (e," i < o9) _c R + there is (xj" i < to) such that 

X c_ t_J (x, - ei, x, + ~,). 
i < t o  

0.2. THEOREM (Carlson). I f  the union o f  x-many measure zero sets is a 

measure zero set then the union o f  less than x-many strong measure zero sets is a 

strong measure zero set. 
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F. Galvin asked if in the Carlson theorem it is possible to replace, from the 
hypothesis, "measure zero' by meager. 

In the first section we will show that this is impossible by showing 

0.3. THEOREM. I f  Z F  is consistent then there is a model for ZFC satisfying 
(i) MA(a-centered) + 2~o > R2. 
(ii) There is (X~ : i < to1), each Xi is a strong measure zero set but U X~ is not 

a strong measure zero set. 

Some time ago, Galvin, Mycielski and Solovay gave a very elegant descrip- 
tion of the strong measure zero sets, namely 

0.4. THEOREM (Galvin-Mycielski-Solovay). X c_ R has strong measure 

zero i f f  for every meager set M there is x E R such that 

(x + X ) A M = ~ .  • 

Using this characterization, we naturally consider the following objects. 

0.5. DEFINITION. X __ R is strongly meager if for every Lcbesgue measure 
zero set M there is x ~ R  such that (X + x) A M -- ~ .  • 

These sets are very unfriendly and we know very little about them. For 
instance, we don' t  know if the collection of strongly meager sets is an ideal. 
Anyway, we can state the Dual Borel Conjecture. 

0.6. DEFINITION. The Dual Borel Conjecture says that every strongly 
meager set is countable. 

Carlson proved the consistency of the Dual Borel Conjecture. 

0.7. THEOREM (Carslon). I f  Z F  is consistent then there is a model for ZFC 
+ the Dual Borel Conjecture. • 

Carlson's Theorem is very strong. His proofs show that every model might 
be extended to a model for the Dual Borel Conjecture. 

In Section §2 we will show that MA (a-centered) does not produce uncount- 
able strongly meager sets by showing 

0.8. ThEOReM. I f  Z F  is consistent then there is a model for ZFC + the 
Dual Borel Conjecture + MA (a-centered). 

S. Todorcevic points out a discrepancy between a result of Roi tman [9] on 
one hand and a consequence of a result of Shelah [10] §2 on the other hand. We 
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will use Carlson's Theorem 0.6 in order to see that the result in Roitman [9] is 

false. 

0.9. THEOREM. I f  M is a model o f  ZFC and 2 ~0 > Rl and r is a Cohen real 
over M then M[r] ~ "MA (a-linked) fails". 

PaooF. Let M be a model such that if r is Cohen real over M then 

M[r] ~ MA (a-linked). Let ro~ be to2-Cohen reals over M. Then by Carlson [2], 

M [ r J  ~ "Dual Borel Conjecture". 

But for every real a E M [ r j  there exists a Cohen real r~M[ro j  such that 

a EM[r], and because M[r] ~ "MA(a-linked)", we have in M [ r j  that the 

following holds: let X E [R] o~, n M. If A is a Borel null set of  reals then there 

exists a real number b such that 

(b + X ) N A  = ~  

(using a random real over L [X]). This fact implies that 

M[ro,2] ~ "Dual Borel Conjecture fails". • 

However, some part of MA may hold after adding a Cohen real, namely 

0.10. TrIEOREM. I f  M ~ "MA (a-centered)" and r is Cohen real over M, 

then M[r] ~ "MA(a-centered)". 

This theorem was proved independently by many people, including the 
authors, and we include in this section a sketch of Baumgartner's proof. This 
proof uses Bell's theorem, ([0]), which says that p = c is equivalent to 

MA (a-centered). 

Sketch that p = c is preserved by adding one Cohen real. Consider a Cohen 
real as a function from to into 2. Let {da : a < x}, where x < c, be a set of  terms 

for a family which is forced to have f.i.p. For kE to ,  define a k-packet to be a 

sequence {( p,, no) : a ~ k2} where p, is a Cohen condition, and a < po. Let Aa 

be the set of  all k- packets {( p,, n,)" a E 2 k} such that p, IF- n, ~ d,, and k varies 

over all positive integers, let B, = {k-packets: k > n}. Then {B,: n < to} U 

{A, : a < x} has f.i.p., therefore it has a lower bound A. I fd  is the term defined 

b y p  I~" n ~ d  ifffor some q >- p, (q, n ) ~ U A ,  then (proof should be provided 

by the reader) d c * d~ for all a. • 

The authors are grateful to the referee for his remarks improving the 
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presentation of this work. The Baumgartner proof was also supplied by the 
referee. 

All notations used in this article are standard, and a good reference is Kunen 
[5], where it is possible to find the definition of the forcing notions used in this 
work (i.e. Cohen real forcing, etc.). 

§1. Strong measure zero sets 

We recall 

1.1. DEFINITION. X C R has strong measure zero if for every (ei: / < to) 

(ei > 0) there exists (xi : i < to) __. R such that X __. LJi<`0(x~ - t~, x~ + ti). 

1.2. FACT. Clearly {X: X has strong measure zero} is a a-ideal. 

1.3. DEFINITION. (a) Let I be a a-ideal of subsets of  reals. Then Add(l)  
holds if and only if for every (A~ : a < x) such that x < 2~0 and each A,  E I ,  

a < x, we have that U,<,~A~,~I. 

(b) Let 

= {A __. R : A is a meager set}, 

ffi {A C_ R : A has Lebesgue measure zero}, 

S M Z  = {A c_ R : A has strong measure zero}. 

1.4. THEOREM (Bartoszynski). Add(.~)ffi* Add(h) .  • 

1.5. THEOREM (Carlson). MA (.~) ~ Add(SMZ) .  

We will give the proof of Cadson's theorem. We will show something stronger. 
Instead of working in R we will work in 2 '°. The following is easy to show 

1.6. FACT. X __ 2 ̀ 0 has strong measure zero if and only if for everyfEto`0 

(w.l.o.g. f is increasing) there exists g E (2 <,0)`0 such that 
(i) for each n ~ to ,  g ( n ) ~ 2  ~"~, 
(ii) for every h E X there exists infinitely many n E to such that h ~ f ( n )  = 

g(n). 
(In other words, if [g(n)] = {h ~ 2`0 : h t f ( n )  ffi g(n)} then condition (ii) says 

X c_ nn<`0 Um>.n[g(m)].) 

1.7. FACT (Bartoszynski). Add(Xe) iff for every F~[to`0] <c there exists 

h E(to<`0) °' such that 

(i) (V  n E t o ) ( I h ( n ) l  = n), 
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(ii) ( V f E F ) (  3 n ~ to) (V m > n)( f (n)Eh(n)) .  

PROOV. See [ 1]. • 

Now we are ready to show Carlson's Theorem: Let (X i : i  < x ) ,  x < c  

be strong measure zero sets. Let f~too,  be increasing. Let g ( n ) =  n .f(n).  

Let hi~(2<°~) '° be such that for each n E t o ,  h i (n)E2 ~t") and 

X~ c_ n,e,o Um.>,[h~(n)]. Using 3.7 we let h ~((2<°~)<'°) °' such that for each 

n ~ co, I h (n) I = n and for each i < x there is n E co such that for every m _-> n 

hi (m)Eh(m) .  

Now it is not hard to see that 

(i) U <o,x; _ 
(ii) lt(U,eh(,)[s]) = n . 2 -g~") < 2 -~"). 

This completes the proof of 1.5. Note that we are using only Add(.~'). 

Many people, among them the first author, have conjectured that Add(~¢) 

already implies Add(SMZ). We will see that this is false, as can be deduced 

from the following two theorems. 

1.8. THEOREM (Folklore). MA (a-centered) =* Add(h) .  • 

1.9. THEOREM. Cons(ZF)=* Cons(ZFC + MA(a-centered) + 7 Add(SMZ)). 

The proof of this theorem will take the rest of  this section. We need some 

definitions and technical lemmas. 

1.10. DEFINITION. (a) Let f E  to °', and f / =  (rh: l ~ a ), a ~ [to]'°. Then we 

say that f /obeysf  if and only if for every l ~ a, rh ~ 2 ~t) and for every q ~ a there 
exist infinitely many p ~ to such that 

r/q __C_ r/p 

(we will assumef( l  + 1) > 22~"). 

(b) Let 9 = ( vt : l E a ), f / =  {/~m : m E b) be given, then we define 

f / < * 9  

if and only if for every l E to there exists k E to such that for every p E a - k 
there is m E b - I satisfying 

qm C_ Vp. 

(c) Let ¢/= ( 1/1 : l E a ) be given, then we define 
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n u 
j~¢o 3 <i~a  

1.11. FACT. Let P and O be given, then 

0 <*P==*A(~) C A(O). 

PgOOF. If x~A(~)  then there exists infinitely many l e a  such that 

x t f ( i )=  vi, for some function f .  Fix l ~ to then there exists k E o~ such that 

for every p ~ a - k there is m E b - I satisfying 

~]m CVp. 

So pick l e a -  k s.t. x r f ( i )= vi. So pick m E b -  l s.t. ~/m C__ vp, therefore 

x ~ [ ~]m I ~--- ~]m, and as l was arbitrary we have that x CA(f/). 

1.12. DEFINXTION. We say that ( f :  i < x) is a dominating family if 

(i) for every i <x , f~co ' ° ;  
(ii) for every f E t o  °" there exists i < x  such that f < * f /  (that is 

( S m E09 Vn > m)(f(n) < f/(n))). 

1.13. FACT. (a) X __. 2 ̀ o has strong measure zero if and only if for every 

f E  to °' there exists ~/obeying f s u c h  that X __c A (0). 

(b) Let ( f : i < x) be a dominating family. Then X has strong measure zero 
iff for every i < x there exists 0 obeying f,. such that X __. A (0). • 

Sketch of  the Forcing Construction. We will give a finite support iterated 

forcing, of  length 092, Po~ = Lim(Pi; Qg: i < to2). Let 

A = {a < 092 : cof(a) = to1} U {0}. 

Then we will have the following situation: 

a ~ A  then lie, "Q,-adds a dominating real £" .  

Therefore in the final extension (f~ : aEA ) will be a dominating family. 

On the set B = {a + 1 : aEA } we will have the following situation: 

f lEB  then I[-e, "(x,~ : i < wl) is a set 0f091 reals". 

In the final extension we will have 

(a) For each i < to,, { x~" fl ~ 092} = Xi is of  strong measure zero. 
(b) Ui<,o, X~ is not strong measure zero. 

In order to get (b) we will do the construction in such a way that for every f/ 
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which obeysfo, there are some ~ and i satisfying x,a $ A  (f/). For  this we need to 

give more definitions and some theorems about finite support i terated forcing. 

Lastly we will get M A  (a-centered) because we have that 092 \ A U B C [092] °'2 
and we have enough room in order  to pass for every a-centered partial order  

coded in some intermediate  stage. 

Now we begin with some definitions and facts. The next definition plays a 

central role in the forcing construction. 

1.14. DEFINITION. Let ( (¢/~'i : i < cot) : g < fl) be such that for every 

i < cot, g < fl, ~]6,i obeys f~ C coo,, and for d l <  c~2 we have f6, < *  f62- We say 

((f/6,i : i < col) : g < fl) is big if and only if  for every f/obeying f0, there is j  < cot 

such that for every i > j  and cSl < ~2 < f l ,  there is no q Cco satisfying 

6t , i  t~2,i ~ ~1 ,i " (Vp)(q<p<coArlq Ct/p (3sCco) ( r /q  Cr/s__.r/~2")). 

1.15. FACT. Let ((f?*'~: i < col) : g < 8 )  be big. Let f /be given obeying f0. 

Then there exists j C co such that for every i > j ,  c5 < fl we have 

6'') - # ; a .  

PROOF. Because ((f/6,i : i < col) : ~ <]~)  is big we can f ind jCcol  satisfying 

1.14 for f/. It is enough to show 

A(f/~,~) - A(¢/) # ~ ,  when i > j .  

Fix q0Cdom(f/~,'). Then there is p l > q o  such that for no sCco  we have 
rl~.i C rl s C a,i _ r/y,. Set q~ = Pl, then there is P2 > ql such that for no s Cco we have 
rlq6.i c rl s C_ rIT,2 

Continuing in this form we can get a sequence 

J , i  $ , i  $ , i  t/q o C t/q, C ~/q2 C . . . .  

Set x = ~.~j<o, t~,i r/~ . Then x CA(f] '~'i) - A(fl) .  • 

REMARK. (a) We will use this fact in order  to add some x belonging to 
A(fl") - A ( f l ) .  This will say that A(f/) is not a covering for the U~<o,, Xi. 

(b) In the construction we will assume that the family ( (f/6a : i < col ) : c~ < 

/~) has the following extra assumption: for gl < ~2 </~,  for each i < co~ 

f/,s~,i < ,  f],~2,i. 

Therefore if x CA (f/*~,~) then x CA (~/6,.~). 

The next goal is to show that the property of  being big is preserved under  the 

following conditions: 
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(a) Extending the universe by a g-centered forcing notion (we will show 
something stronger). 

(b) By finite support iteration. 
These two properties are the basic technology for our construction. 

1.16 LEMMA. Let  V be a model  o f  Z F C  and ( ( 0 6,i : i < 0~1) : ~ < fl ) is big 

in V. Let  P E V be a forcing notion satisfying: 

( , )  ( V X C _ P ) ( [ X [  > _ _ R ~ = ~ ( q r c _ x ) ( [ r [  = R ~ ^ r i s d i r e c t e d ) ) .  

Then [~-p ,,((¢/6,i : j < f l )  is big". 

PROOF. Suppose that the conclusion of the lemma is false. Then there 
exists ( p,  : a ~ A  ) c_ P and ~ E V e and p ~ P  satisfying 

(i) p 1[- "0 is witnessing ((r/6" : ~ < # )  is not big" (we are assuming p I[- 

obeys f0). 
(ii) IA I = R1 and for every o~EA, p < p, .  
(iii) For every a ~ A ,  there exists k .~o9 such that a < i, and 

6 I,i ~/~.~,/ . .  6 l,i 
p ~ l ~ - " ( V l ) ( k ~ < l < o g A r l k : ' c  ~ ( 3 s E og)tt/k: " C t/s c t/6"2'~*)). 

(iv) (Va0, . . . .  a.~Ogl)( 3 q ~ P ) ( V i E [ O ,  n])(p,,  < q). 
(v) Without loss of generality k~ = k and  t/~ g'~" = p.  

Now we ask what are the possibilities for 

( t l , : s ~ l )  

for fixed l (w.l.o.g. dora(0 ) = co). 
We have a finite number  of such possibilities and each 1),, a E A ,  may 

contradict some part of  them. 
Let Tt be the set of (t/$ : s _-< l) such that for every a E A  there exists q, ->__ p,  

q, II- (t~, :s  ~1 )  -- (~, :s  ~ l ) .  

1.17. FACT. (a) For every l, Tj ÷ N .  (Remember that A is directed and the 
family of  possible (t/$ : s < l) are finite.) 

(b) If(t/~:s_-<l + 1 ) ~ T l ÷ ~ ( t i , : s < l ) ~ T t .  
Therefore, by the K6ning lemma there exists f/E Vsuch that f/obeys f0 and for 

every l E co , 0 ~ l ~ Tt. 
(c) f/ says that ( f /" :a<~o~) is not big (obviously this gives the con- 

tradiction). 
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P R O O F .  

there exists q. > p~ such that 

q.l~- (0,:s _-<m + 1) = (rh:S <=m + 1). 

Now using (iii) it should be true that 

J2,i (c) Let q be k and ~ A .  So let m ~co be such that p c r/.~ -, then 

because q~ > p~. • 

1.18. LEMMA. Let (Pj; Q j : j < 7) be a 7-stage iterated forcing notion with 
finite support and let ( ( fff'i : i < o91) : J < fl) be big. Assume that 

(i) (Vj  <7 ) (  ]l-e~ "Q~ ~ c.c.c.")and 
(ii) for each j < 7 

I[-ej "((ff ' i  : i  < col) :6  < p )  is big". 

Then II-e,"((ff'; : i < col): J < / ~ )  isbig", wherePr =li_~P~. 

PROOF. Clearly the only non-trivial case is when cf(7) -- co. (Otherwise the 
counterexample appears before 7.) So w.l.o.g. 7 = co. Let 0 be a Py-name for a 
counterexample. Therefore 

(i) It-e, "0 obeys f0". 
(ii) ( ] p EPr)(p [I--"0 is a counterexample"). 

Therefore there exists ( p~ : a E A  ) C Py satisfying 

(i) IA I = R1 and for each a E A ,  p < p~. 
(ii) For each a E A ,  there exists k, Eco such that o~ < i~ and JJ, ~ and 

,, 6~,i ~/6.2,/~ ==~ - -  6~,i p~ll-(Vl)(lg<l<co^qk: "c  (3S~CO)I, qk: 'C~ Crf.2'i)) ". 

(iii) W.l.o.g. k~ = k and ~/k" " = P. 
We recall that the support of Pr is finite, so 
(iv) W.l.o.g. there is t E co such that a E A implies p~E P,. 
Again we may assume t = 0, because we can pass to V[Gt] with Gt containig 

uncountably many p,'s. Now, let pt EP~ be such that 
(a) pt < pt+~ for l~co ,  
(b) pt I~-e, "0 r l = r/t". 

Therefore U r/t = f/belongs to V and obeys f0. 
(c) f/says that ( ( fff.; : i < col) : J < P ) is not big in V, so is a contradition. • 

The next goal is to show that using a a-centered forcing notion, we can 
extend the domain of a big family in such a way that the new sequences obey 

p c r/, ___ r/~-% 
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some given function f. Guaranteed this, we will iterate o92-times, and we will 
get that the underlying functions for the big family are a dominating family. 

1.19. LEMMA. Let V be a model o f  ZFC,  and let f E o9 °' and let 

C ( fl~'t : i < o91) : ~ < fl ) 

be in V satisfying 
(i) p < o95, 
(ii) ~ < ~, < fl ~ f/~,i < .  f/y,~, for i < COl, 

(iii) (~/6,i: i < coo obeys f6, 

(iv) ~ <~, < f l ~ f ~  < * f r  < * f ,  and 
(v) (~/6,i : i < ogl) is big. 

Then there exists a a-centered forcing notion Q adding a sequence C fl p'~ : i < o9~ ) 

satisfying 
(a) I[-q"((f/a'*: i < o 9 ~ ) : 0 < f l +  1) isbig",  

(b) ][-e "(Vi < w~)(0Y,~ < *  0 p,t)', for each 7 < ft. 

PROOF. Let Q~ be the following forcing notion Ca, 9, h) E Q~ if 
(a) there exists k < o9 such that a c_ k, 
([3) 9 = Cvt: l e a )  and for every l e a ,  vtE2 ~l), 
(,/) h is a function satisfying 

I d o m ( h ) l < R o  and h : o g × f l ~ 0 9  

and for every (I, ~,)Edom(h), if n E a  and h(l, 7) < n then there exists 
m E o9 - I such that rl~ i c v,. 

We say that (a;, 91, h 1) <ei (a 2, 9 2, h 2) if a I c_ a~ and 91 _ ~2 and h ~ c_ h 2. 
This completes the definition of Q;. 

FACT. Q~ is a-centered. 

PROOF. We may consider o9 having the discrete topology. Then o9 is 
clearly separable. Also Ifll--< R0 therefore o,×po9 is also a separable space. 
Let CF j : j<og)  be dense in o,×pog. For each j < o 9  we define the follow- 
ing relation on Q;: Ca ~, 9 ~, h ~) ~ .  Ca 2, 9 2, h 2) if a ~ = a 2 and 9 ~ = 9 2 and Fj 
belong to [hi] N [h~], where for h : o9 X f l ~ o g ,  Idom(h)l < R0, we set [hi = 
{F E ,o ×po9 : F t dom(h ) = h }. Clearly this relation will give a 09-partition of Q~ 
into directed sets. • 

FACT. Let H c_ Q~ be generic over V[G], and let 

qP'; = U {/~: ( q Ca, 9, h) EH)(/~ = 9)}. 
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Then for every 7 <f l ,  r/y'~ <*  r/a'~. 

PROOF. Fix (a, P, h ) in Q~, and 7 < ft. Let l ~ o9 and let m > sup(a). Then 

we can extend (a, P, h)  to (a, ~, h U (((/ ,  7), m)}) and this condition forces 

that for every p > m, p Edom(q p'~) there exists q Eo9 - l such that 

FACT. Let f/be in V, f/obeys f0. Let i < o91 satisfying 

For every J~ < J2 < fl there is no q E to satisfying 

x~ J i , i  (V p)(q < p < w  ^rl6q ''i C q~q"i~( 3sEog)Lrlq C r/3C r/q62")). 

Then in V e, the following holds: for every J~ _-< &2 < fl there is no q E o9 

satisfying 

J t , i  Ja,i  ~ 51,i  • 
( V p ) ( q < p < o g ^ r l  e Crlq (3s~og)(rlq Cr/s<qq6'")). 

PROOF. Case 1. J~ < $z < [3. By assumption and 1.1 6. 

Case 2. J ~ < $ 2 = f l .  Let qEo9 be given and let ( a , o , h )  be in Qi. Let 
71 < 72 < • • • < 7, be a list of  all the ordinals which appear in the domain ofh.  

Then w.l.o.g. J~ ___< 7,. Using 1.1 0(b) we pick q < l] </2 < • • • < l, such that 

(.) for each j ,  i fp  ~o9 - / j + l  then there is r~o9 - / j  satisfying 

FlY c -Y'"' " tP  

Now applying n-time our assumption on i, using J~ and 7,, we get p satisfying 

(a) c p ,  
(I~) for no s ~ o9, r/q 6''i C q~ C p, 

(T) Ipl > f r Y , ) .  
Now by a bookkeeping argument we can extend p to v,, and v,, satisfying (13). 
Now using (,) we see that {a U (m }, ~ tO {Vm }, h ) is a condition, forcing that q 
satisfies the condition for J~ and t~ 2. • 

REMARK. We can use the same argument to see that "a" is infinite in the 
generic extension. 

Now we define Q to be 

Q =  I-I Q i 
i < tol 

with finite support, and we order Q by taking the order induced by the product. 

FACT. Q is a-centered. 



12 H. JUDAH AND S. SHELAH Isr. J. Math. 

PgOOF. Like the proof of Qi ~ a-centered. • 

FACT. Let (~P'i" i < 091) be the Q-name of the sequence given by forcing 
with Q. Then I~-e ,,((f/6,~ : i <o91) • t~ < f l  + 1) is big". 

PROOF. Clearly [[-e "~P'~ obeysp' .  Let i~ be a Q-name of a sequence such 
that [~-Q "~ obey f0". Then, by c.c.c., there exists ~ < (.01 such that 

~ is a (i<[I¢ Qi)-name. 

Therefore we have that in V n,<~ Q' ( ( f/6,i, i < 091 ) "~ < fl ) is big, so we can use 
the above fact and that the forcing Q~ is absolute. • 

Now we are ready to give the forcing definition. 

1.20. DEFINmON. P~ is good if there is Q = (P,~'O~:ot<092) , an 
092-stage iterated forcing notion satisfying 

(0) Po~ is the direct limit of Q. 
(1) If a = 0 or cof(a) = 091 then 

b .  "Q~ is Hechler real forcing". 

(Hechler real forcing is {(n, f ) "  n ~ co ^ f E  09 °' } with the obvious order 
to get a dominating function.) To make the construction clear, let 
(o~p:fl < 092) be {0} U {a : coffcx) = 091 and a < 092}. Let fp be the 
P~,+ z-name of the Hechler real added by P~,+ 1/P~, over V%. 

(2) Suppose we have (P,; Q,:a<ap) for some fl <o92 then for every 
< 7 < fl the following hold: 
(i) [~'e.,+, "~aa,+l adds (~r,/. i < 091) obeying fr, 
(ii) [F-eo,+,"Q-~,+I is tr-centered", 
(iii) [I-e.,+2 "(Vi  < 091)(~ 6,~ <*  ~r,,). 

(3) For every fl < 092 we define (x~" i < 091) such that for every i < 091 
(i) x~ is a P~,+2-name of a member of 2 ~', 

(ii) II"e.,+~ " ~  ~A(~" )" .  
(.) Let (.vp'fl<092) be such that for every fl<092, ~p is a P~,+l-name 

satisfying 

I~'e.,+l "~a obeys f0". 

And for every P~-name ~ such that 

[~'e~ "~ obeys fo" 
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there exists fl < 092 satisfying 

IF o, = 
Then 

(iii) there exists i < 091 such that 

(4) For each y < 09~ 

I~'P7 ' , ( (~6, i  : i < 091) : 0/6 < ~5) is  big". 

(5) I}-e° "MA (a-centered)". 

1.21. LEMMA. I f  V ~ GCH, then there is Po~ which is good. 

PROOF. Let 

A = {0} U {fl < 092 : cof(fl) = 091} = {ap:fl < 092}, 

B - - { a +  1 :aEA}.  

Clearly 092- A U B has cardinality Rz, so by a bookkeeping argument and 
using ordinals from 09~ - A  U B we can easily get (5). We get (0) and (1) easily. 
For (2) we use Lemma 1.19. For (3) we give a partition 0f092 into (Bi : i < 092), 
satisfying Bi~[092]'°2 for each i < 0 9 v  Then in order to get (v~:fl<092) 
satisfying (.), we use Bp (fl < 09~), to take care of each possible ~ obeying f0 
which is in V e, (w.l.o.g. Bp Nfl + 1 = Zi). (This means that if ), EBp, then i'n 
the stage a~ we take care of  the member  ~, of  list of ~'s.) 

Now we know that itp E V~,and therefore since ( (f/6.i. i < 09~ ) • 6 < fl ) is big 
in V%+,, we can pick (x~" i < 09~ ) satisfying the required conditions. Remem- 
ber that in Ve-,+,the following holds: 

(i) ( V / <  09,)(V6 <p)(#~'~ < *  ~P"), 
(ii) A(~/p's) -J(£p) ~ ~ ,  for almost everyj. 

Last we need to check (4). We have three cases, and we use induction. 
Case 1. {a~ : a6 < ? } is bounded in 7. In this case (4) follows by using 1.1 6 

and 1.18. 

Case 2. {a6: a 6 < 7 }  is unbounded in ~,and cf(~,)-- 09~. 

This case is trivial, because every possible counterexample appears in an 
intermediate stage, so the inductive hypothesis applies. 

Case 3. {a~: a6<~'}  is unbounded in ~, and cf(~,) = 09. 
The proof  of  this is like 1.1 8 and we leave it to the reader. The only new 

assumption is that for each ),CA, { 61, 62 } C_ sup( p~ ). Then we use the 
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induction hypothesis in Ve,. • 

1.22. THEOREM. Cons(ZF)~ Cons(ZFC + MA(a-centered) + 7Add(SMZ)). 

PROOF. Let V = L, and let Po~ be good. We use the notation of 1.20 and 
1.21. 

Let .Xi be a Po~-name satisfying 

Ih o,"x, = : p  < 

Then we have 
L "X, (i) r-eo~ .~ ESMZ" by 1.20(3)(ii), 1.20(2)(iii) and 1.13(b). 

(ii) II-P.~ "U;<o,, ~ q~SMZ" by 1.20(3)(iii). 
(iii) IFPco "MA (a-centered)" by 1.20(5). • 

1.23. REMARK. Add(SMZ) does not imply Add(h) .  

PROOF. By Pawlikowski [9], there exists a model for Add(SMZ) where 

b = R i .  • 

§2. MA (a-centered) and the Dual Borel Conjecture 

We recall 

2.0. DEFINITION. (a) A set of reals X is strongly meager if for every 
measure zero set M there exists a real number x such that (X + x) n M -- ~ .  

(b) Dual Borel Conjecture: Every strongly meager set is countable. 
It is a very interesting open question if the collection of the strongly meager 

set is an Ideal. 

2.1. THEOREM (T. Carlson). Cons(ZFC) implies Cons(ZFC + Dual Borel 
Conjecture). 

We proved in Ihoda-Shelah [4] the following: 

2.2. THEOREM. The following theories are equiconsistent: 
(1) ZFC + there exists an inaccessible cardinal. 
(2) ZFC + Borel Conjecture + every Z~-set of reals has the property of Baire. 
(3) ZFC + Borel Conjecture + every Zt2-set of reals is Lebesgue measurable. 
(4) ZFC + Dual Borel Conjecture + every Z~-set of  reals is Lebesgue mea- 

surable. 
And we asked if 
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(5) Z F C  + Dual Borel Conjecture + every Z~,-set o f  reals has the property o f  

Baire has the same force as (1). 

The following theorem gives a negative answer to this question. 

2.3. THEOREm. The following theories are equiconsistent: 

(i) ZFC.  
(ii) ZFC + MA (a-centered) + Dual Borel Conjecture. 

PROOF. Essentially we all give a generalization of Carlson's proof of 2.1. 
(ii)=~ (i) is clear. 

The rest of this section is devoted to the proof of (i)=~ (ii). 

2.4. DEFINmON. For a real c, Pc is the poset of sets A _C [0, 1] of  measure 
> c which are finite unions of closed rational intervals. Order Pc by inverse 
inclusion. 

2.5. FACT. Forcing with Pc is equivalent to forcing to add a Cohen real. 

2.6. THEOREM. There exists a constant c such that i f  A C_ Z / n Z  for some 

n > 2 and I A [ > 2 there exists B C_ Z/n Z with I B I < cn log I A I / I A [ such that 
A + B  = Z lnZ .  

PROOF. Lorentz [6]. 

2.7. COROLLARY. l f  X C_ [0, 1] has cardinality k > 2 then there exists an 

open set U < [0, 1] such that [0, 1] = X + U (mod Z) and#(U)  < 4(log k)/k. 

PRooF (Carlson [2]). Note that U is a finite union of rational open 
intervals. • 

2.8. LEMMA. Let Pc*Q be a a-centered forcing notion. Let X c__ [0, 1] be 
uncountable. I f  G c_ Pc*Q is generic over V and K is the compact set o f  measure 
c constructed from G A "Pc, then in V[G] no translate o f  K has uncountable 
intersection with X. 

PROOF. Suppose that there exists a Pc*Q-name of a real number r, such 
that 

0 ][-pc*q "(r + X) < K is uncountable". 

Therefore there exists xi E X,  ( Pi, qi) E Pc*Q for i < oJl such that 

( pi, q,) IF "xi + r K". 

Pc is countable, and Pc*Q is a-centered, therefore without loss of generality 
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we can assume that for every i, Pi = P, fixed, and for it . . . . .  is <col ,  
( p, q~, U . . .  U q~,) is an upper bound  for ( p, qij), 1 < j  < n. 

2.9. CLAIM. There exists p '  > p and il . . . . .  is such that 

{x~, . . . . .  x~, } + --~ p '  --- [0, 1 ] (mod Z). 

PROOF. Using 1.7 we pick it, .  • •, in, and Usuch  that 

(i) {x,, . . . . .  x,. ) + U = [0, 1] (Mod Z), 

( i i ) / t (  ~ U ~ p)  > c. 

Now i fp ' ,  it . . . . .  in are as in 2.9, we have that  

{ P' ,  air U ° ' "  U qi.) IF "r + ( x , , . . . ,  Xn ] ___ K 

and 

. . . . .  x , )  + X -- [0, 1]", 

and this is a contradiction. This finishes the proof  of  2.8. • 

2.10. REMARK. From 2.8, using the fact that adding one Cohen real is 

isomorphic to adding co-Cohen reals, we obtain that there exists Ks, a compact  

set of  measure 1 - 1/n such that if  C = Us  Ks then C has measure one and in 
V[G] no translate of  C has uncountable intersection with X. 

Now we conclude the proof  of  2.3. We will give the usual forcing notion that 
forces MA(a-centered) over a model  of  GCH. Therefore we will assume 
V ~ GCH. 

It is well known that there exists Q = (P~, Q, : a < cos), a co2-stage i terated 

forcing satisfying 

(1) for every a < co2 there exists p > a, 

Pp [[- "Qp is Cohen real forcing"; 

(2) for every a < fl < co2, 

P,  [[- "P,_p is a-centered";  

(3) Po~ IF "MA(a-centered)". 
Therefore,  using the countable chain condit ion of  P~,  2.10, and (1), (2) we can 

conclude 
(4) Pon [[-"Dual Borel Conjecture".  
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